Hyperspectral Data Compression

· ·
· Springer Science & Business Media
eBook
418
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Hyperspectral Data Compression provides a survey of recent results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. Chapter 1 addresses compression architecture, and reviews and compares compression methods. Chapters 2 through 4 focus on lossless compression (where the decompressed image must be bit for bit identical to the original). Chapter 5, contributed by the editors, describes a lossless algorithm based on vector quantization with extensions to near lossless and possibly lossy compression for efficient browning and pure pixel classification. Chapter 6 deals with near lossless compression while. Chapter 7 considers lossy techniques constrained by almost perfect classification. Chapters 8 through 12 address lossy compression of hyperspectral imagery, where there is a tradeoff between compression achieved and the quality of the decompressed image. Chapter 13 examines artifacts that can arise from lossy compression.

Tentang pengarang

James A. Storer is Chair of the IEEE Data Compression Conference.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.