Alternating Decision Tree: Fundamentals and Applications

· Artificial Intelligence Bok 27 · One Billion Knowledgeable
E-bok
205
Sider
Kvalifisert
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

What Is Alternating Decision Tree

A categorization strategy that may be learned by machine learning is known as an alternating decision tree, or ADTree. It is connected to boosting and generalizes decision trees at the same time.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Alternating Decision Tree


Chapter 2: Decision Tree Learning


Chapter 3: AdaBoost


Chapter 4: Random Forest


Chapter 5: Gradient Boosting


Chapter 6: Propositional Calculus


Chapter 7: Support Vector Machine


Chapter 8: Method of Analytic Tableaux


Chapter 9: Boolean Satisfiability Algorithm Heuristics


Chapter 10: Multiplicative Weight Update Method


(II) Answering the public top questions about alternating decision tree.


(III) Real world examples for the usage of alternating decision tree in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of alternating decision tree' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of alternating decision tree.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.