K Nearest Neighbor Algorithm: Fundamentals and Applications

· Artificial Intelligence Book 28 · One Billion Knowledgeable
3.0
1 review
Ebook
119
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

What Is K Nearest Neighbor Algorithm

The k-nearest neighbors technique, also known as k-NN, is a non-parametric supervised learning method that was initially created in 1951 by Evelyn Fix and Joseph Hodges in the field of statistics. Thomas Cover later expanded on the original concept. It has applications in both regression and classification. In both scenarios, the input is made up of the k training instances in a data collection that are the closest to one another. Whether or not k-NN was used for classification or regression, the results are as follows:The output of a k-nearest neighbor classification is a class membership. A plurality of an item's neighbors votes on how the object should be classified, and the object is then assigned to the class that is most popular among its k nearest neighbors (where k is a positive number that is often quite small). If k is equal to one, then the object is simply classified as belonging to the category of its single closest neighbor.The result of a k-NN regression is the value of a certain property associated with an object. This value is the average of the values of the k neighbors that are the closest to the current location. If k is equal to one, then the value of the output is simply taken from the value of the one nearest neighbor.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: K-nearest neighbors algorithm


Chapter 2: Supervised learning


Chapter 3: Pattern recognition


Chapter 4: Curse of dimensionality


Chapter 5: Nearest neighbor search


Chapter 6: Cluster analysis


Chapter 7: Kernel method


Chapter 8: Large margin nearest neighbor


Chapter 9: Structured kNN


Chapter 10: Weak supervision


(II) Answering the public top questions about k nearest neighbor algorithm.


(III) Real world examples for the usage of k nearest neighbor algorithm in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of k nearest neighbor algorithm' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of k nearest neighbor algorithm.

Ratings and reviews

3.0
1 review

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.