Alternating Decision Tree: Fundamentals and Applications

· Artificial Intelligence 27권 · One Billion Knowledgeable
eBook
205
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

What Is Alternating Decision Tree

A categorization strategy that may be learned by machine learning is known as an alternating decision tree, or ADTree. It is connected to boosting and generalizes decision trees at the same time.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Alternating Decision Tree


Chapter 2: Decision Tree Learning


Chapter 3: AdaBoost


Chapter 4: Random Forest


Chapter 5: Gradient Boosting


Chapter 6: Propositional Calculus


Chapter 7: Support Vector Machine


Chapter 8: Method of Analytic Tableaux


Chapter 9: Boolean Satisfiability Algorithm Heuristics


Chapter 10: Multiplicative Weight Update Method


(II) Answering the public top questions about alternating decision tree.


(III) Real world examples for the usage of alternating decision tree in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of alternating decision tree' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of alternating decision tree.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.