Alternating Decision Tree: Fundamentals and Applications

Ā· Artificial Intelligence 27 å·» Ā· One Billion Knowledgeable
é›»å­ę›øē±
205
ćƒšćƒ¼ć‚ø
åˆ©ē”ØåÆčƒ½
č©•ä¾”ćØćƒ¬ćƒ“ćƒ„ćƒ¼ćÆē¢ŗčŖęøˆćæć§ćÆć‚ć‚Šć¾ć›ć‚“ 詳瓰

ć“ć®é›»å­ę›øē±ć«ć¤ć„ć¦

What Is Alternating Decision Tree

A categorization strategy that may be learned by machine learning is known as an alternating decision tree, or ADTree. It is connected to boosting and generalizes decision trees at the same time.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Alternating Decision Tree


Chapter 2: Decision Tree Learning


Chapter 3: AdaBoost


Chapter 4: Random Forest


Chapter 5: Gradient Boosting


Chapter 6: Propositional Calculus


Chapter 7: Support Vector Machine


Chapter 8: Method of Analytic Tableaux


Chapter 9: Boolean Satisfiability Algorithm Heuristics


Chapter 10: Multiplicative Weight Update Method


(II) Answering the public top questions about alternating decision tree.


(III) Real world examples for the usage of alternating decision tree in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of alternating decision tree' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of alternating decision tree.

ć“ć®é›»å­ę›øē±ć‚’č©•ä¾”ć™ć‚‹

ć”ę„Ÿęƒ³ć‚’ćŠčžć‹ć›ćć ć•ć„ć€‚

čŖ­ę›øęƒ…å ±

ć‚¹ćƒžćƒ¼ćƒˆćƒ•ć‚©ćƒ³ćØć‚æćƒ–ćƒ¬ćƒƒćƒˆ
Android 悄 iPad / iPhone 用の Google Play ćƒ–ćƒƒć‚Æć‚¹ ć‚¢ćƒ—ćƒŖć‚’ć‚¤ćƒ³ć‚¹ćƒˆćƒ¼ćƒ«ć—ć¦ćć ć•ć„ć€‚ć“ć®ć‚¢ćƒ—ćƒŖćŒć‚¢ć‚«ć‚¦ćƒ³ćƒˆćØč‡Ŗå‹•ēš„ć«åŒęœŸć™ć‚‹ćŸć‚ć€ć©ć“ć§ć‚‚ć‚Ŗćƒ³ćƒ©ć‚¤ćƒ³ć‚„ć‚Ŗćƒ•ćƒ©ć‚¤ćƒ³ć§čŖ­ć‚€ć“ćØćŒć§ćć¾ć™ć€‚
ćƒŽćƒ¼ćƒˆćƒ‘ć‚½ć‚³ćƒ³ćØćƒ‡ć‚¹ć‚Æćƒˆćƒƒćƒ— ćƒ‘ć‚½ć‚³ćƒ³
Google Play ć§č³¼å…„ć—ćŸć‚Ŗćƒ¼ćƒ‡ć‚£ćƒ–ćƒƒć‚ÆćÆć€ćƒ‘ć‚½ć‚³ćƒ³ć®ć‚¦ć‚§ćƒ–ćƒ–ćƒ©ć‚¦ć‚¶ć§å†ē”Ÿć§ćć¾ć™ć€‚
é›»å­ę›øē±ćƒŖćƒ¼ćƒ€ćƒ¼ćŖć©ć®ćƒ‡ćƒć‚¤ć‚¹
Kobo é›»å­ę›øē±ćƒŖćƒ¼ćƒ€ćƒ¼ćŖć©ć® E Ink ćƒ‡ćƒć‚¤ć‚¹ć§čŖ­ć‚€ć«ćÆć€ćƒ•ć‚”ć‚¤ćƒ«ć‚’ćƒ€ć‚¦ćƒ³ćƒ­ćƒ¼ćƒ‰ć—ć¦ćƒ‡ćƒć‚¤ć‚¹ć«č»¢é€ć™ć‚‹åæ…č¦ćŒć‚ć‚Šć¾ć™ć€‚ć‚µćƒćƒ¼ćƒˆć•ć‚Œć¦ć„ć‚‹é›»å­ę›øē±ćƒŖćƒ¼ćƒ€ćƒ¼ć«ćƒ•ć‚”ć‚¤ćƒ«ć‚’č»¢é€ć™ć‚‹ę–¹ę³•ć«ć¤ć„ć¦č©³ć—ććÆć€ćƒ˜ćƒ«ćƒ—ć‚»ćƒ³ć‚æćƒ¼ć‚’ć”č¦§ćć ć•ć„ć€‚

ć‚·ćƒŖćƒ¼ć‚ŗć®ē¶šē·Ø

Fouad Sabry ć®ćć®ä»–ć®ę›øē±

é”žä¼¼ć®é›»å­ę›øē±