Recent Progress on the Donaldson–Thomas Theory: Wall-Crossing and Refined Invariants

· SpringerBriefs in Mathematical Physics Book 43 · Springer Nature
Ebook
104
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book is an exposition of recent progress on the Donaldson–Thomas (DT) theory. The DT invariant was introduced by R. Thomas in 1998 as a virtual counting of stable coherent sheaves on Calabi–Yau 3-folds. Later, it turned out that the DT invariants have many interesting properties and appear in several contexts such as the Gromov–Witten/Donaldson–Thomas conjecture on curve-counting theories, wall-crossing in derived categories with respect to Bridgeland stability conditions, BPS state counting in string theory, and others.
Recently, a deeper structure of the moduli spaces of coherent sheaves on Calabi–Yau 3-folds was found through derived algebraic geometry. These moduli spaces admit shifted symplectic structures and the associated d-critical structures, which lead to refined versions of DT invariants such as cohomological DT invariants. The idea of cohomological DT invariants led to a mathematical definition of the Gopakumar–Vafa invariant, which was firstproposed by Gopakumar–Vafa in 1998, but its precise mathematical definition has not been available until recently.
This book surveys the recent progress on DT invariants and related topics, with a focus on applications to curve-counting theories.

About the author

The author is currently Professor and Principal investigator at Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo. He was an invited speaker at the ICM 2014.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.