Adelic Line Bundles on Quasi-Projective Varieties

· Annals of Mathematics Studies Book 223 · Princeton University Press
Ebook
240
Pages
Eligible
This book will become available on January 13, 2026. You will not be charged until it is released.

About this ebook

A comprehensive new theory of adelic line bundles on quasi-projective varieties over finitely generated fields

This book introduces a comprehensive theory of adelic line bundles on quasi-projective varieties over finitely generated fields, developed in both geometric and arithmetic contexts. In the geometric setting, adelic line bundles are defined as limits of line bundles on projective compactifications under the boundary topology. In the arithmetic setting, they are defined as limits of Hermitian line bundles on projective arithmetic compactifications, also under the boundary topology. After establishing these foundational definitions, the book uses the theory to explore key concepts such as intersection theory, effective sections, volumes, and positivity of adelic line bundles. It also applies these results to study height functions of algebraic points and prove an equidistribution theorem on quasi-projective varieties. This theory has broad applications in the study of numerical, dynamical, and Diophantine properties of moduli spaces, quasi-projective varieties, and varieties over finitely generated fields.

About the author

Xinyi Yuan is a professor at the Beijing International Center for Mathematical Research of Peking University. Shou-Wu Zhang is the Eugene Higgins Professor of Mathematics at Princeton University. Yuan and Zhang are the authors, with Wei Zhang, of The Gross-Zagier Formula on Shimura Curves (Princeton).

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.