Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-differential Operators

· Mathematical Surveys and Monographs Book 61 · American Mathematical Soc.
Ebook
187
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

In the classical theory of self-adjoint boundary value problems for linear ordinary differential operators there is a fundamental, but rather mysterious, interplay between the symmetric (conjugate) bilinear scalar product of the basic Hilbert space and the skew-symmetric boundary form of the associated differential expression. This book presents a new conceptual framework, leading to an effective structured method, for analyzing and classifying all such self-adjoint boundary conditions. The program is carried out by introducing innovative new mathematical structures which relate the Hilbert space to a complex symplectic space.This work offers the first systematic detailed treatment in the literature of these two topics: complex symplectic spaces - their geometry and linear algebra - and quasi-differential operators. This title features: authoritative and systematic exposition of the classical theory for self-adjoint linear ordinary differential operators (including a review of all relevant topics in texts of Naimark, and Dunford and Schwartz); introduction and development of new methods of complex symplectic linear algebra and geometry and of quasi-differential operators, offering the only extensive treatment of these topics in book form; new conceptual and structured methods for self-adjoint boundary value problems; and, extensive and exhaustive tabulations of all existing kinds of self-adjoint boundary conditions for regular and for singular ordinary quasi-differential operators of all orders up through six.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.