Wavelets: A Student Guide

· Australian Mathematical Society Lecture Series Boek 24 · Cambridge University Press
E-boek
275
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

This text offers an excellent introduction to the mathematical theory of wavelets for senior undergraduate students. Despite the fact that this theory is intrinsically advanced, the author's elementary approach makes it accessible at the undergraduate level. Beginning with thorough accounts of inner product spaces and Hilbert spaces, the book then shifts its focus to wavelets specifically, starting with the Haar wavelet, broadening to wavelets in general, and culminating in the construction of the Daubechies wavelets. All of this is done using only elementary methods, bypassing the use of the Fourier integral transform. Arguments using the Fourier transform are introduced in the final chapter, and this less elementary approach is used to outline a second and quite different construction of the Daubechies wavelets. The main text of the book is supplemented by more than 200 exercises ranging in difficulty and complexity.

Over de auteur

Peter Nickolas is an Associate Professor in the School of Mathematics and Applied Statistics at the University of Wollongong, New South Wales. He has nearly 40 years of experience in teaching and research. A large part of his research has been in the theory of topological groups, but he has also made significant contributions to the emerging theory of free paratopological groups, to the study of the geometry of metric spaces and to applications of mathematics and formal logic in computer science.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.