Twitter data used in this project was scraped from February of 2015 and contributors were asked to first classify positive, negative, and neutral tweets, followed by categorizing negative reasons (such as "late flight" or "rude service"). This data was originally posted by Crowdflower last February and includes tweets about 6 major US airlines. Additionally, Crowdflower had their workers extract the sentiment from the tweet as well as what the passenger was dissapointed about if the tweet was negative.
The information of main attributes for this project are as follows: airline_sentiment : Sentiment classification.(positivie, neutral, and negative); negativereason : Reason selected for the negative opinion; airline : Name of 6 US Airlines('Delta', 'United', 'Southwest', 'US Airways', 'Virgin America', 'American'); and text : Customer's opinion.
The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer.
Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
PROJECT 2: HOTEL REVIEW: SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI
The data used in this project is the data published by Anurag Sharma about hotel reviews that were given by costumers. The data is given in two files, a train and test. The train.csv is the training data, containing unique User_ID for each entry with the review entered by a costumer and the browser and device used. The target variable is Is_Response, a variable that states whether the costumers was happy or not happy while staying in the hotel. This type of variable makes the project to a classification problem. The test.csv is the testing data, contains similar headings as the train data, without the target variable.
The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer.
Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
PROJECT 3: STUDENT ACADEMIC PERFORMANCE ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI
The dataset used in this project consists of student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school-related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In the two datasets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful.
Attributes in the dataset are as follows: school - student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira); sex - student's sex (binary: 'F' - female or 'M' - male); age - student's age (numeric: from 15 to 22); address - student's home address type (binary: 'U' - urban or 'R' - rural); famsize - family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3); Pstatus - parent's cohabitation status (binary: 'T' - living together or 'A' - apart); Medu - mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education); Fedu - father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education); Mjob - mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other'); Fjob - father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other'); reason - reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other'); guardian - student's guardian (nominal: 'mother', 'father' or 'other'); traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour); studytime - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours); failures - number of past class failures (numeric: n if 1<=n<3, else 4); schoolsup - extra educational support (binary: yes or no); famsup - family educational support (binary: yes or no); paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no); activities - extra-curricular activities (binary: yes or no); nursery - attended nursery school (binary: yes or no); higher - wants to take higher education (binary: yes or no); internet - Internet access at home (binary: yes or no); romantic - with a romantic relationship (binary: yes or no); famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent); freetime - free time after school (numeric: from 1 - very low to 5 - very high); goout - going out with friends (numeric: from 1 - very low to 5 - very high); Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high); Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high); health - current health status (numeric: from 1 - very bad to 5 - very good); absences - number of school absences (numeric: from 0 to 93); G1 - first period grade (numeric: from 0 to 20); G2 - second period grade (numeric: from 0 to 20); and G3 - final grade (numeric: from 0 to 20, output target).
The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler.
Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy.
Vivian Siahaan is a fast-learner who likes to do new things. She was born, raised in Hinalang Bagasan, Balige, on the banks of Lake Toba, and completed high school education from SMAN 1 Balige. She started herself learning Java, Android, JavaScript, CSS, C ++, Python, R, Visual Basic, Visual C #, MATLAB, Mathematica, PHP, JSP, MySQL, SQL Server, Oracle, Access, and other programming languages. She studied programming from scratch, starting with the most basic syntax and logic, by building several simple and applicable GUI applications. Animation and games are fields of programming that are interests that she always wants to develop. Besides studying mathematical logic and programming, the author also has the pleasure of reading novels. Vivian Siahaan has written dozens of ebooks that have been published on Sparta Publisher: Data Structure with Java; Java Programming: Cookbook; C ++ Programming: Cookbook; C Programming For High Schools / Vocational Schools and Students; Java Programming for SMA / SMK; Java Tutorial: GUI, Graphics and Animation; Visual Basic Programming: From A to Z; Java Programming for Animation and Games; C # Programming for SMA / SMK and Students; MATLAB For Students and Researchers; Graphics in JavaScript: Quick Learning Series; JavaScript Image Processing Methods: From A to Z; Java GUI Case Study: AWT & Swing; Basic CSS and JavaScript; PHP / MySQL Programming: Cookbook; Visual Basic: Cookbook; C ++ Programming for High Schools / Vocational Schools and Students; Concepts and Practices of C ++; PHP / MySQL For Students; C # Programming: From A to Z; Visual Basic for SMA / SMK and Students; C # .NET and SQL Server for High School / Vocational School and Students. At the ANDI Yogyakarta publisher, Vivian Siahaan also wrote a number of books including: Python Programming Theory and Practice; Python GUI Programming; Python GUI and Database; Build From Zero School Database Management System In Python / MySQL; Database Management System in Python / MySQL; Python / MySQL For Management Systems of Criminal Track Record Database; Java / MySQL For Management Systems of Criminal Track Records Database; Database and Cryptography Using Java / MySQL; Build From Zero School Database Management System With Java / MySQL.
Rismon Hasiholan Sianipar was born in Pematang Siantar, in 1994. After graduating from SMAN 3 Pematang Siantar 3, the writer traveled to the city of Jogjakarta. In 1998 and 2001 the author completed his Bachelor of Engineering (S.T) and Master of Engineering (M.T) education in the Electrical Engineering of Gadjah Mada University, under the guidance of Prof. Dr. Adhi Soesanto and Prof. Dr. Thomas Sri Widodo, focusing on research on non-stationary signals by analyzing their energy using time-frequency maps. Because of its non-stationary nature, the distribution of signal energy becomes very dynamic on a time-frequency map. By mapping the distribution of energy in the time-frequency field using discrete wavelet transformations, one can design non-linear filters so that they can analyze the pattern of the data contained in it. In 2003, the author received a Monbukagakusho scholarship from the Japanese Government. In 2005 and 2008, he completed his Master of Engineering (M.Eng) and Doctor of Engineering (Dr.Eng) education at Yamaguchi University, under the guidance of Prof. Dr. Hidetoshi Miike. Both the master's thesis and his doctoral thesis, R.H. Sianipar combines SR-FHN (Stochastic Resonance Fitzhugh-Nagumo) filter strength with cryptosystem ECC (elliptic curve cryptography) 4096-bit both to suppress noise in digital images and digital video and maintain its authenticity. The results of this study have been documented in international scientific journals and officially patented in Japan. One of the patents was published in Japan with a registration number 2008-009549. He is active in collaborating with several universities and research institutions in Japan, particularly in the fields of cryptography, cryptanalysis and audio / image / video digital forensics. R.H. Sianipar also has experience in conducting code-breaking methods (cryptanalysis) on a number of intelligence data that are the object of research studies in Japan. R.H. Sianipar has a number of Japanese patents, and has written a number of national / international scientific articles, and dozens of national books. R.H. Sianipar has also participated in a number of workshops related to cryptography, cryptanalysis, digital watermarking, and digital forensics. In a number of workshops, R.H. Sianipar helps Prof. Hidetoshi Miike to create applications related to digital image / video processing, steganography, cryptography, watermarking, non-linear screening, intelligent descriptor-based computer vision, and others, which are used as training materials. Field of interest in the study of R.H. Sianipar is multimedia security, signal processing / digital image / video, cryptography, digital communication, digital forensics, and data compression / coding. Until now, R.H. Sianipar continues to develop applications related to analysis of signal, image, and digital video, both for research purposes and for commercial purposes based on the Python programming language, MATLAB, C ++, C, VB.NET, C # .NET, R, and Java.