Vector Fields on Manifolds

· Springer
Livro eletrónico
30
Páginas
As classificações e as críticas não são validadas  Saiba mais

Acerca deste livro eletrónico

This paper is a contribution to the topological study of vector fields on manifolds. In particular we shall be concerned with the problems of exist ence of r linearly independent vector fields. For r = 1 the classical result of H. Hopf asserts that the vanishing of the Euler characteristic is the necessary and sufficient condition, and our results will give partial extens ions of Hopf's theorem to the case r > 1. Arecent article by E. Thomas [10] gives a good survey of work in this general area. Our approach to these problems is based on the index theory of elliptic differential operators and is therefore rather different from the standard topological approach. Briefly speaking, what we do is to observe that certain invariants of a manifold (Euler characteristic, signature, etc. ) are indices of elliptic operators (see [5]) and the existence of a certain number of vector fields implies certain symmetry conditions for these operators and hence corresponding results for their indices. In this way we obtain certain necessary conditions for the existence of vector fields and, more generally , for the existence of fields of tangent planes. For example, one of our results is the following THEOREM (1. 1). Let X be a compact oriented smooth manifold 0/ dimension 4 q, and assume that X possesses a tangent fteld of oriented 2-planes (that is, an oriented 2-dimensional sub-bundle 0/ the tangent vector bundle).

Classifique este livro eletrónico

Dê-nos a sua opinião.

Informações de leitura

Smartphones e tablets
Instale a app Google Play Livros para Android e iPad/iPhone. A aplicação é sincronizada automaticamente com a sua conta e permite-lhe ler online ou offline, onde quer que esteja.
Portáteis e computadores
Pode ouvir audiolivros comprados no Google Play através do navegador de Internet do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos e-ink, como e-readers Kobo, tem de transferir um ficheiro e movê-lo para o seu dispositivo. Siga as instruções detalhadas do Centro de Ajuda para transferir os ficheiros para os e-readers suportados.