Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems

· Springer Science & Business Media
E-boek
244
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

It would be hopeless to attempt to give a complete account of the history of the calculus of variations. The interest of Greek philosophers in isoperimetric problems underscores the importance of "optimal form" in ancient cultures, see Hildebrandt-Tromba [1] for a beautiful treatise of this subject. While variatio nal problems thus are part of our classical cultural heritage, the first modern treatment of a variational problem is attributed to Fermat (see Goldstine [1; p.l]). Postulating that light follows a path of least possible time, in 1662 Fer mat was able to derive the laws of refraction, thereby using methods which may already be termed analytic. With the development of the Calculus by Newton and Leibniz, the basis was laid for a more systematic development of the calculus of variations. The brothers Johann and Jakob Bernoulli and Johann's student Leonhard Euler, all from the city of Basel in Switzerland, were to become the "founding fathers" (Hildebrandt-Tromba [1; p.21]) of this new discipline. In 1743 Euler [1] sub mitted "A method for finding curves enjoying certain maximum or minimum properties", published 1744, the first textbook on the calculus of variations.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.