Unimodality of Probability Measures

· ·
· Mathematics and Its Applications Bok 382 · Springer Science & Business Media
E-bok
256
Sidor
Betyg och recensioner verifieras inte  Läs mer

Om den här e-boken

The central theme of this monograph is Khinchin-type representation theorems. An abstract framework for unimodality, an example of applied functional analysis, is developed for the introduction of different types of unimodality and the study of their behaviour. Also, several useful consequences or ramifications tied to these notions are provided. Being neither an encyclopaedia, nor a historical overview, this book aims to serve as an understanding of the basic features of unimodality. Chapter 1 lays a foundation for the mathematical reasoning in the chapters following. Chapter 2 deals with the concept of Khinchin space, which leads to the introduction of beta-unimodality in Chapter 3. A discussion on several existing multivariate notions of unimodality concludes this chapter. Chapter 4 concerns Khinchin's classical unimodality, and Chapter 5 is devoted to discrete unimodality. Chapters 6 and 7 treat the concept of strong unimodality on R and to Ibragimov-type results characterising the probability measures which preserve unimodality by convolution, and the concept of slantedness, respectively. Most chapters end with comments, referring to historical aspects or supplying complementary information and open questions. A practical bibliography, as well as symbol, name and subject indices ensure efficient use of this volume. Audience: Both researchers and applied mathematicians in the field of unimodality will value this monograph, and it may be used in graduate courses or seminars on this subject too.

Betygsätt e-boken

Berätta vad du tycker.

Läsinformation

Smartphones och surfplattor
Installera appen Google Play Böcker för Android och iPad/iPhone. Appen synkroniseras automatiskt med ditt konto så att du kan läsa online eller offline var du än befinner dig.
Laptops och stationära datorer
Du kan lyssna på ljudböcker som du har köpt på Google Play via webbläsaren på datorn.
Läsplattor och andra enheter
Om du vill läsa boken på enheter med e-bläck, till exempel Kobo-läsplattor, måste du ladda ned en fil och överföra den till enheten. Följ anvisningarna i hjälpcentret om du vill överföra filerna till en kompatibel läsplatta.