Unimodality of Probability Measures

· ·
· Mathematics and Its Applications Cartea 382 · Springer Science & Business Media
Carte electronică
256
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The central theme of this monograph is Khinchin-type representation theorems. An abstract framework for unimodality, an example of applied functional analysis, is developed for the introduction of different types of unimodality and the study of their behaviour. Also, several useful consequences or ramifications tied to these notions are provided. Being neither an encyclopaedia, nor a historical overview, this book aims to serve as an understanding of the basic features of unimodality. Chapter 1 lays a foundation for the mathematical reasoning in the chapters following. Chapter 2 deals with the concept of Khinchin space, which leads to the introduction of beta-unimodality in Chapter 3. A discussion on several existing multivariate notions of unimodality concludes this chapter. Chapter 4 concerns Khinchin's classical unimodality, and Chapter 5 is devoted to discrete unimodality. Chapters 6 and 7 treat the concept of strong unimodality on R and to Ibragimov-type results characterising the probability measures which preserve unimodality by convolution, and the concept of slantedness, respectively. Most chapters end with comments, referring to historical aspects or supplying complementary information and open questions. A practical bibliography, as well as symbol, name and subject indices ensure efficient use of this volume. Audience: Both researchers and applied mathematicians in the field of unimodality will value this monograph, and it may be used in graduate courses or seminars on this subject too.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.