Unimodality of Probability Measures

· ·
· Mathematics and Its Applications Boek 382 · Springer Science & Business Media
E-boek
256
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

The central theme of this monograph is Khinchin-type representation theorems. An abstract framework for unimodality, an example of applied functional analysis, is developed for the introduction of different types of unimodality and the study of their behaviour. Also, several useful consequences or ramifications tied to these notions are provided. Being neither an encyclopaedia, nor a historical overview, this book aims to serve as an understanding of the basic features of unimodality. Chapter 1 lays a foundation for the mathematical reasoning in the chapters following. Chapter 2 deals with the concept of Khinchin space, which leads to the introduction of beta-unimodality in Chapter 3. A discussion on several existing multivariate notions of unimodality concludes this chapter. Chapter 4 concerns Khinchin's classical unimodality, and Chapter 5 is devoted to discrete unimodality. Chapters 6 and 7 treat the concept of strong unimodality on R and to Ibragimov-type results characterising the probability measures which preserve unimodality by convolution, and the concept of slantedness, respectively. Most chapters end with comments, referring to historical aspects or supplying complementary information and open questions. A practical bibliography, as well as symbol, name and subject indices ensure efficient use of this volume. Audience: Both researchers and applied mathematicians in the field of unimodality will value this monograph, and it may be used in graduate courses or seminars on this subject too.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.