Unbounded Non-Commutative Integration

· Mathematical Physics Studies 7 knyga · Springer Science & Business Media
El. knyga
191
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

Non-commutative integration has its origin in the classical papers of Murray and von Neumann on rings of operators, and was introduced because of unsolved problems in unitary group representations and the elucidation of various aspects of quantum-mechanical formalism, together with formal calculus in such operator rings. These papers emphasized the interest in 1I -factors and pOinted out the remarkable behavior and 1 algebraic structure of the set of all unbounded closed operators a. ffiliated to such rings. The absence of power tools in functional analysis - mainly settled in their definitive form by A. Grothendieck around 1950-195- together with the pathological manipulation of algebraic operations on closed operators in Hilbert spaces, has limited ring-theory to the study of algebras of bounded operators with the main objective the difficult question of classifica tion up to isomorphisms of factors. This material has permitted a rigorous study of discrete systems in statistical mechanics but appears to be less convincing in other domains of physics (in the algebraic approach to field theory, for example). The striking role of Hamiltonians, Schrodinger operators and Lie group invariant properties in such areas of physics disappears in the so called C*-approach.

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.