Turnpike Phenomenon and Symmetric Optimization Problems

· Springer Nature
E-bok
336
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

Written by a leading expert in turnpike phenomenon, this book is devoted to the study of symmetric optimization, variational and optimal control problems in infinite dimensional spaces and turnpike properties of their approximate solutions. The book presents a systematic and comprehensive study of general classes of problems in optimization, calculus of variations, and optimal control with symmetric structures from the viewpoint of the turnpike phenomenon. The author establishes generic existence and well-posedness results for optimization problems and individual (not generic) turnpike results for variational and optimal control problems. Rich in impressive theoretical results, the author presents applications to crystallography and discrete dispersive dynamical systems which have prototypes in economic growth theory.
This book will be useful for researchers interested in optimal control, calculus of variations turnpike theory and their applications, suchas mathematicians, mathematical economists, and researchers in crystallography, to name just a few.

Om forfatteren

​Alexander J. Zaslavski is professor in the Department of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel. He has authored numerous books with Springer, the most recent of which include Turnpike Theory for the Robinson–Solow–Srinivasan Model (978-3-030-60306-9), The Projected Subgradient Algorithm in Convex Optimization (978-3-030-60299-4), Convex Optimization with Computational Errors (978-3-030-37821-9), Turnpike Conditions in Infinite Dimensional Optimal Control (978-3-030-20177-7), Optimization on Solution Sets of Common Fixed Point Problems (978-3-030-78848-3).

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.