Transition to Analysis with Proof

· CRC Press
3,0
1 resensie
E-boek
362
Bladsye
Geskik
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Transition to Real Analysis with Proof provides undergraduate students with an introduction to analysis including an introduction to proof. The text combines the topics covered in a transition course to lead into a first course on analysis. This combined approach allows instructors to teach a single course where two were offered.

The text opens with an introduction to basic logic and set theory, setting students up to succeed in the study of analysis. Each section is followed by graduated exercises that both guide and challenge students. The author includes examples and illustrations that appeal to the visual side of analysis. The accessible structure of the book makes it an ideal refence for later years of study or professional work.

  • Combines the author’s previous works Elements of Advanced Mathematics with Foundations of Analysis
  • Combines logic, set theory and other elements with a one-semester introduction to analysis.
  • Author is a well-known mathematics educator and researcher
  • Targets a trend to combine two courses into one

Graderings en resensies

3,0
1 resensie

Meer oor die skrywer

Steven G. Krantz is a professor at Washington University in St. Louis where he teaches mathematics. He received his Ph.D. from Princeton University and since then has taught at UCLA, Princeton University, and Pennsylvania State University. Dr. Krantz has written over 175 scholarly papers and more than 65 books. He is the founding editor of the Journal of Geometric Analysis. He was named a fellow of the American Mathematical Society and has received the Chauvenet Prize, Beckenbach Book Award, and Kemper Prize.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.