Transition to Advanced Mathematics

·
· CRC Press
E-boek
552
Bladsye
Geskik
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

This unique and contemporary text not only offers an introduction to proofs with a view towards algebra and analysis, a standard fare for a transition course, but also presents practical skills for upper-level mathematics coursework and exposes undergraduate students to the context and culture of contemporary mathematics.

The authors implement the practice recommended by the Committee on the Undergraduate Program in Mathematics (CUPM) curriculum guide, that a modern mathematics program should include cognitive goals and offer a broad perspective of the discipline.

Part I offers:

  1. An introduction to logic and set theory.
  2. Proof methods as a vehicle leading to topics useful for analysis, topology, algebra, and probability.
  3. Many illustrated examples, often drawing on what students already know, that minimize conversation about "doing proofs."
  4. An appendix that provides an annotated rubric with feedback codes for assessing proof writing.

Part II presents the context and culture aspects of the transition experience, including:

  1. 21st century mathematics, including the current mathematical culture, vocations, and careers.
  2. History and philosophical issues in mathematics.
  3. Approaching, reading, and learning from journal articles and other primary sources.
  4. Mathematical writing and typesetting in LaTeX.

Together, these Parts provide a complete introduction to modern mathematics, both in content and practice.

Table of Contents

Part I - Introduction to Proofs

  1. Logic and Sets
  2. Arguments and Proofs
  3. Functions
  4. Properties of the Integers
  5. Counting and Combinatorial Arguments
  6. Relations

    Part II - Culture, History, Reading, and Writing
  7. Mathematical Culture, Vocation, and Careers
  8. History and Philosophy of Mathematics
  9. Reading and Researching Mathematics
  10. Writing and Presenting Mathematics

Appendix A. Rubric for Assessing Proofs

Appendix B. Index of Theorems and Definitions from Calculus and Linear Algebra

Bibliography

Index

Biographies

Danilo R. Diedrichs is an Associate Professor of Mathematics at Wheaton College in Illinois. Raised and educated in Switzerland, he holds a PhD in applied mathematical and computational sciences from the University of Iowa, as well as a master’s degree in civil engineering from the Ecole Polytechnique Fédérale in Lausanne, Switzerland. His research interests are in dynamical systems modeling applied to biology, ecology, and epidemiology.

Stephen Lovett is a Professor of Mathematics at Wheaton College in Illinois. He holds a PhD in representation theory from Northeastern University. His other books include Abstract Algebra: Structures and Applications (2015), Differential Geometry of Curves and Surfaces, with Tom Banchoff (2016), and Differential Geometry of Manifolds (2019).

Meer oor die skrywer

Danilo R. Diedrichs is an Associate Professor of Mathematics at Wheaton College in Illinois. Raised and educated in Switzerland, he holds a PhD in applied mathematical and computational sciences from the University of Iowa, as well as a master’s degree in civil engineering from the Ecole Polytechnique Fédérale in Lausanne, Switzerland. His research interests are in dynamical systems modeling applied to biology, ecology, and epidemiology.

Stephen Lovett is a Professor of Mathematics at Wheaton College in Illinois. He holds a PhD in representation theory from Northeastern University. His other books include Abstract Algebra: Structures and Applications (2015), Differential Geometry of Curves and Surfaces, with Tom Banchoff (2016), and Differential Geometry of Manifolds (2019).

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.