Traffic Congestion Control by PDE Backstepping

·
· Springer Nature
eBook
356
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This monograph explores the design of controllers that suppress oscillations and instabilities in congested traffic flow using PDE backstepping methods. The first part of the text is concerned with basic backstepping control of freeway traffic using the Aw-Rascle-Zhang (ARZ) second-order PDE model. It begins by illustrating a basic control problem – suppressing traffic with stop-and-go oscillations downstream of ramp metering – before turning to the more challenging case for traffic upstream of ramp metering. The authors demonstrate how to design state observers for the purpose of stabilization using output-feedback control. Experimental traffic data are then used to calibrate the ARZ model and validate the boundary observer design. Because large uncertainties may arise in traffic models, adaptive control and reinforcement learning methods are also explored in detail.
Part II then extends the conventional ARZ model utilized until this point in orderto address more complex traffic conditions: multi-lane traffic, multi-class traffic, networks of freeway segments, and driver use of routing apps. The final chapters demonstrate the use of the Lighthill-Whitham-Richards (LWR) first-order PDE model to regulate congestion in traffic flows and to optimize flow through a bottleneck. In order to make the text self-contained, an introduction to the PDE backstepping method for systems of coupled first-order hyperbolic PDEs is included.
Traffic Congestion Control by PDE Backstepping is ideal for control theorists working on control of systems modeled by PDEs and for traffic engineers and applied scientists working on unsteady traffic flows. It will also be a valuable resource for researchers interested in boundary control of coupled systems of first-order hyperbolic PDEs.

저자 정보

Huan Yu is an Assistant Professor in the Thrust of Intelligent Transportation at the Hong Kong University of Science and Technology (Guangzhou), and a joint Assistant Professor in the Department of Civil and Environmental Engineering at the Hong Kong University of Science and Technology. She received her Ph.D. degree from University of California, San Diego. She was a visiting scholar at University of California, Berkeley and Massachusetts Institute of Technology.


Miroslav Krstic
is Fellow of SIAM, IEEE, IFAC, ASME, AAAS, IET, AIAA (AF), and the Serbian Academy of Sciences and Arts. His awards include the Bellman, Reid, Oldenburger, Ragazzini, Chestnut, Paynter, Nyquist Lecture, IFAC Nonlinear Control , IFAC Ruth Curtain DPS, Balakrishnan, Axelby, and Schuck (’96 and ’19). He has served as EiC or senior editor in Systems & Control Letters, Automatica, and IEEE Transactions on Automatic Control. Four of Krstic’s 18 coauthoredbooks have been with this Birkhäuser series, including the single-authored Delay Compensation for Nonlinear, Adaptive, and PDE Systems.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.