Topological Methods in Walrasian Economics

· Lecture Notes in Economics and Mathematical Systems Buku 92 · Springer Science & Business Media
eBook
131
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

In winter 71/72 I held a seminar on general equilibrium theory for a jOint group of students in mathematics and in econo mics at the university of Bonn , w.Germany1~ The economists , how ever , had a mathematical background well above the average • Most of the material treated in that seminar is described in these notes. The connection between smooth preferences and smooth demand func tions [ see Debreu (1972) ] and regular economies based on agents with smooth preferences are not presented here • Some pedagogical difficulties arose from the fact that elementary knowledge of algebraic topology is not assumed although it is helpful and indeed necessary to make some arguments precise • It is only a minor restriction , at present , that functional ana lysis is not used • But with the development of the theory more economic questions will be considered in their natural infinite dimensional setting • Economic knowledge is not required , but especially a reader without economic background will gain much by reading Debreu's classic "Theory of Value" (1959) • Although the formulation of our economic problem uses a map between Euclidean spaces only , we shall also consider ma- folds • Manifolds appear in our situation because inverse images under differentiable mappings between Euclidean spaces are very often differentiable manifolds • ( Under differentiability assump tions , for instance , the graph of the equilibrium set correspon

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.