Topological Methods in Walrasian Economics

· Lecture Notes in Economics and Mathematical Systems Bog 92 · Springer Science & Business Media
E-bog
131
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

In winter 71/72 I held a seminar on general equilibrium theory for a jOint group of students in mathematics and in econo mics at the university of Bonn , w.Germany1~ The economists , how ever , had a mathematical background well above the average • Most of the material treated in that seminar is described in these notes. The connection between smooth preferences and smooth demand func tions [ see Debreu (1972) ] and regular economies based on agents with smooth preferences are not presented here • Some pedagogical difficulties arose from the fact that elementary knowledge of algebraic topology is not assumed although it is helpful and indeed necessary to make some arguments precise • It is only a minor restriction , at present , that functional ana lysis is not used • But with the development of the theory more economic questions will be considered in their natural infinite dimensional setting • Economic knowledge is not required , but especially a reader without economic background will gain much by reading Debreu's classic "Theory of Value" (1959) • Although the formulation of our economic problem uses a map between Euclidean spaces only , we shall also consider ma- folds • Manifolds appear in our situation because inverse images under differentiable mappings between Euclidean spaces are very often differentiable manifolds • ( Under differentiability assump tions , for instance , the graph of the equilibrium set correspon

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.