Topics in Differential Geometry

· American Mathematical Soc.
Ebook
494
Pages
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

This book treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry. The layout of the material stresses naturality and functoriality from the beginning and is as coordinate-free as possible. Coordinate formulas are always derived as extra information. Some attractive unusual aspects of this book are as follows: Initial submanifolds and the Frobenius theorem for distributions of nonconstant rank (the Stefan-Sussman theory) are discussed. Lie groups and their actions are treated early on, including the slice theorem and invariant theory. De Rham cohomology includes that of compact Lie groups, leading to the study of (nonabelian) extensions of Lie algebras and Lie groups. The Frolicher-Nijenhuis bracket for tangent bundle valued differential forms is used to express any kind of curvature and second Bianchi identity, even for fiber bundles (without structure groups).Riemann geometry starts with a careful treatment of connections to geodesic structures to sprays to connectors and back to connections, going via the second and third tangent bundles. The Jacobi flow on the second tangent bundle is a new aspect coming from this point of view. Symplectic and Poisson geometry emphasizes group actions, momentum mappings, and reductions.This book gives the careful reader working knowledge in a wide range of topics of modern coordinate-free differential geometry in not too many pages. A prerequisite for using this book is a good knowledge of undergraduate analysis and linear algebra.

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.