Topics in Differential Geometry

· American Mathematical Soc.
E-book
494
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This book treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry. The layout of the material stresses naturality and functoriality from the beginning and is as coordinate-free as possible. Coordinate formulas are always derived as extra information. Some attractive unusual aspects of this book are as follows: Initial submanifolds and the Frobenius theorem for distributions of nonconstant rank (the Stefan-Sussman theory) are discussed. Lie groups and their actions are treated early on, including the slice theorem and invariant theory. De Rham cohomology includes that of compact Lie groups, leading to the study of (nonabelian) extensions of Lie algebras and Lie groups. The Frolicher-Nijenhuis bracket for tangent bundle valued differential forms is used to express any kind of curvature and second Bianchi identity, even for fiber bundles (without structure groups).Riemann geometry starts with a careful treatment of connections to geodesic structures to sprays to connectors and back to connections, going via the second and third tangent bundles. The Jacobi flow on the second tangent bundle is a new aspect coming from this point of view. Symplectic and Poisson geometry emphasizes group actions, momentum mappings, and reductions.This book gives the careful reader working knowledge in a wide range of topics of modern coordinate-free differential geometry in not too many pages. A prerequisite for using this book is a good knowledge of undergraduate analysis and linear algebra.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.