Topics in Computational Algebra

·
· Springer Science & Business Media
3.5
리뷰 2개
eBook
261
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C).

평점 및 리뷰

3.5
리뷰 2개

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.