Theory of Symmetric Lattices

·
· Grundlehren der mathematischen Wissenschaften Βιβλίο 173 · Springer Science & Business Media
ebook
194
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

Of central importance in this book is the concept of modularity in lattices. A lattice is said to be modular if every pair of its elements is a modular pair. The properties of modular lattices have been carefully investigated by numerous mathematicians, including 1. von Neumann who introduced the important study of continuous geometry. Continu ous geometry is a generalization of projective geometry; the latter is atomistic and discrete dimensional while the former may include a continuous dimensional part. Meanwhile there are many non-modular lattices. Among these there exist some lattices wherein modularity is symmetric, that is, if a pair (a,b) is modular then so is (b,a). These lattices are said to be M-sym metric, and their study forms an extension of the theory of modular lattices. An important example of an M-symmetric lattice arises from affine geometry. Here the lattice of affine sets is upper continuous, atomistic, and has the covering property. Such a lattice, called a matroid lattice, can be shown to be M-symmetric. We have a deep theory of parallelism in an affine matroid lattice, a special kind of matroid lattice. Further more we can show that this lattice has a modular extension.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.