Theory of Random Determinants

· Mathematics and Its Applications Bog 45 · Springer Science & Business Media
5,0
1 anmeldelse
E-bog
678
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

'Et mm. ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point all':'' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf IIClI.t to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Bedømmelser og anmeldelser

5,0
1 anmeldelse

Om forfatteren

Vyacheslav L. Girko is Professor of Mathematics in the Department of Applied Statistics at the National University of Kiev and the University of Kiev Mohyla Academy. He is also affiliated with the Institute of Mathematics, Ukrainian Academy of Sciences. His research interests include multivariate statistical analysis, discriminant analysis, experiment planning, identification and control of complex systems, statistical methods in physics, noise filtration, matrix analysis, and stochastic optimization. He has published widely in the areas of multidimensional statistical analysis and theory of random matrices.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.