The Schur Complement and Its Applications

· Numerical Methods and Algorithms Boek 4 · Springer Science & Business Media
4,0
2 reviews
E-boek
295
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

What's in a name? To paraphrase Shakespeare's Juliet, that which - ilie Haynsworth called the Schur complement, by any other name would be just as beautiful. Nevertheless, her 1968 naming decision in honor of Issai Schur (1875-1941) has gained lasting acceptance by the mathematical com munity. The Schur complement plays an important role in matrix analysis, statistics, numerical analysis, and many other areas of mathematics and its applications. Our goal is to expose the Schur complement as a rich and basic tool in mathematical research and applications and to discuss many significant re sults that illustrate its power and fertility. Although our book was originally conceived as a research reference, it will also be useful for graduate and up per division undergraduate courses in mathematics, applied mathematics, and statistics. The contributing authors have developed an exposition that makes the material accessible to readers with a sound foundation in linear algebra. The eight chapters of the book (Chapters 0-7) cover themes and varia tions on the Schur complement, including its historical development, basic properties, eigenvalue and singular value inequalities, matrix inequalities in both finite and infinite dimensional settings, closure properties, and appli cations in statistics, probability, and numerical analysis. The chapters need not be read in the order presented, and the reader should feel at leisure to browse freely through topics of interest.

Beoordelingen en reviews

4,0
2 reviews

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.