The Ricci Flow: Techniques and Applications

· · · · · · · · ·
· Mathematical Surveys and Monographs Kirja 206 · American Mathematical Soc.
E-kirja
374
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

Ricci flow is a powerful technique using a heat-type equation to deform Riemannian metrics on manifolds to better metrics in the search for geometric decompositions. With the fourth part of their volume on techniques and applications of the theory, the authors discuss long-time solutions of the Ricci flow and related topics.

In dimension 3, Perelman completed Hamilton's program to prove Thurston's geometrization conjecture. In higher dimensions the Ricci flow has remarkable properties, which indicates its usefulness to understand relations between the geometry and topology of manifolds. This book discusses recent developments on gradient Ricci solitons, which model the singularities developing under the Ricci flow. In the shrinking case there is a surprising rigidity which suggests the likelihood of a well-developed structure theory. A broader class of solutions is ancient solutions; the authors discuss the beautiful classification in dimension 2. In higher dimensions they consider both ancient and singular Type I solutions, which must have shrinking gradient Ricci soliton models. Next, Hamilton's theory of 3-dimensional nonsingular solutions is presented, following his original work. Historically, this theory initially connected the Ricci flow to the geometrization conjecture. From a dynamical point of view, one is interested in the stability of the Ricci flow. The authors discuss what is known about this basic problem. Finally, they consider the degenerate neckpinch singularity from both the numerical and theoretical perspectives.

This book makes advanced material accessible to researchers and graduate students who are interested in the Ricci flow and geometric evolution equations and who have a knowledge of the fundamentals of the Ricci flow.

 

Tietoja kirjoittajasta

Bennett Chow, University of California, San Diego, La Jolla, CA, Sun-Chin Chu, National Chung Cheng University, Chia-Yi, Taiwan, David Glickenstein, University of Arizona, Tucson, AZ, Christine Guenther, Pacific University, Forest Grove, OR, James Isenberg, University of Oregon, Eugene, OR, Tom Ivey, The College of Charleston, SC, Dan Knopf, University of Texas at Austin, TX, Peng Lu, University of Oregon, Eugene, OR, Feng Luo, Rutgers University, Piscataway, NJ, and Lei Ni, University of California, San Diego, La Jolla, CA

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.