The Geometry of Population Genetics

· Lecture Notes in Biomathematics Bok 31 · Springer Science & Business Media
E-bok
208
Sidor
Betyg och recensioner verifieras inte  Läs mer

Om den här e-boken

The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono graph I hope to show that his ideas illuminate many aspects of pop ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele model of selection plus recombination even when the fitness numbers are constant (i.e. no frequency dependence). This work is addressed to two different kinds of readers which accounts for its mode of organization. For the biologist, Chapter I contains a description of the entire work with brief indications of a proof for the harder results. I imagine a reader with some familiarity with linear algebra and systems of differential equations. Ideal background is Hirsch and Smale's text [15].

Betygsätt e-boken

Berätta vad du tycker.

Läsinformation

Smartphones och surfplattor
Installera appen Google Play Böcker för Android och iPad/iPhone. Appen synkroniseras automatiskt med ditt konto så att du kan läsa online eller offline var du än befinner dig.
Laptops och stationära datorer
Du kan lyssna på ljudböcker som du har köpt på Google Play via webbläsaren på datorn.
Läsplattor och andra enheter
Om du vill läsa boken på enheter med e-bläck, till exempel Kobo-läsplattor, måste du ladda ned en fil och överföra den till enheten. Följ anvisningarna i hjälpcentret om du vill överföra filerna till en kompatibel läsplatta.