The Geometry of Complex Domains

· Progress in Mathematics Boek 291 · Springer Science & Business Media
3,0
1 resensie
E-boek
303
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

This work examines a rich tapestry of themes and concepts and provides a comprehensive treatment of an important area of mathematics, while simultaneously covering a broader area of the geometry of domains in complex space. At once authoritative and accessible, this text touches upon many important parts of modern mathematics: complex geometry, equivalent embeddings, Bergman and Kahler geometry, curvatures, differential invariants, boundary asymptotics of geometries, group actions, and moduli spaces.

The Geometry of Complex Domains can serve as a “coming of age” book for a graduate student who has completed at least one semester or more of complex analysis, and will be most welcomed by analysts and geometers engaged in current research.

Graderings en resensies

3,0
1 resensie

Meer oor die skrywer

Steven G. Krantz received the B.A. degree from the University of California at Santa Cruz and the Ph.D. from Princeton University. He has taught at UCLA, Princeton, Penn State, and Washington University, where he has most recently served as Chair of the Mathematics Department.

Krantz has directed 18 Ph.D. Students and 9 Masters students, and is winner of the Chauvenet Prize and the Beckenbach Book Award. He edits six journals and is Editor-in-Chief of three.

A prolific scholar, Krantz has published more than 55 books and more than 160 academic papers.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.