Tensegrity Systems: Basic Concepts, Mechanical Metamaterials, Biotensegrity

·
· CISM International Centre for Mechanical Sciences 2권 · Springer Nature
eBook
213
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This book illustrates the unique mechanical behaviors of tensegrity systems and their applications in mechanical metamaterials, space structures, and biomechanical models. It demonstrates that by controlling the mechanical response of tensegrity structures through internal and external prestress, it is possible to adjust the speed of mechanical waves within these systems, creating tunable bandgap structures. Furthermore, the geometrically nonlinear response exhibited by several tensegrity systems allows for the support of either compression or rarefaction solitary wave dynamics. These behaviors can be effectively utilized to design novel devices capable of focusing mechanical waves in narrow regions of space, as well as innovative impact protection systems.

After an introduction to the basic concepts and calculation methods for tensegrity systems and their minimal-mass design, the chapters explore the metamaterial behaviors of tensegrity systems associated with bandgap and solitary wave dynamics; present a mechanical model of flexible tensegrities, illustrating how harnessing the buckling of bars in such systems can result in structures with exceptional energy absorption capabilities, suitable for applications such as planetary landers or lattice metamaterials; and discuss the extreme mechanical behaviors achievable in tensegrity-inspired lattice structures exhibiting both soft and stiff deformation modes. The last chapters address the multifaceted field of biotensegrity, and provide an overview of current rapid prototyping techniques for tensegrity systems, along with a discussion of open questions and research opportunities in the field.

저자 정보

Fernando Fraternali is Professor of Structural Mechanics in the Department of Civil Engineering at the University of Salerno, Italy. Most of his research work concerns multiscale modeling and simulation of solids and structures, the nonlinear dynamics of materials and structures, and the design and engineering of sustainable materials at multiple scales. Prof. Fraternali was awarded a Fulbright Research Scholarship for the academic year 2005/06, and has been Visiting Professor at the California Institute of Technology since September 2005, and at the University of California, San Diego. He serves as Associate Editor of “Mechanics Research Communications” and “Frontiers in Materials”.

Julain J. Rimoli earned his master’s and doctoral degrees in aeronautics from Caltech in 2005 and 2009, respectively. Following his graduation, Rimoli joined the MIT Department of Aeronautics and Astronautics as a postdoctoral associate. In 2011, he went to Georgia Tech, where he was the Pratt & Whitney Professor of Aerospace Engineering until joining the University of California Irvine in 2022. His research involves the computational mechanics of materials and structures, with special interest in problems involving multiple length and time scales, and in the development of theories and computational techniques for seamlessly bridging them. Rimoli is an associate fellow of the American Institute of Aeronautics and Astronautics, winner of an NSF CAREER Award and a recipient of the Donald W. Douglas Prize Fellowship and Ernest E. Sechler Memorial Award in Aeronautics.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.