Tables of Bessel Transforms

· Springer Science & Business Media
I-Ebook
290
Amakhasi
Izilinganiso nezibuyekezo aziqinisekisiwe  Funda Kabanzi

Mayelana nale ebook

This material represents a collection of integral tra- forms involving Bessel (or related) functions as kernel. The following types of inversion formulas have been singled out. k I. g(y) = f (x) (xy) 2J (xy) dx J V 0 k I' . f (x) g (y) (xy) 2J (xy) dy J V 0 II. g(y) f(x) (XY)~K (xy)dx J v 0 c+ioo k 1 II'. f (x) = g (y) (xy) 2 [Iv (xy) + I_v(xy)]dy J 27fT c-ioo or also c+ioo k 1 II". f(x) = g (y) (xy) 2Iv (xy) dx J rri oo c-i k III. g(y) f(x) (xy) 2y (xy) dx + J v 0 k III' . f(x) g(y) (xy) "1lv (xy) dy J 0 k IV. g(y) f (x) (xy) "Kv (xy) dx J 0 k g(y) (xy) 2Y (xy)dy IV' - f(x) J v 0 V Preface V. g(y) f(X)Kix(y)dx J 0 -2 -1 sinh (7TX) V'. f(x) 27T x g(y)y Kix(y)dy J 0 21-~[r(~~+~-~v)r(~~+~+~v)]-1 VI. g(y) . J f (x) (xy) ~s (xy) dx o ~, v l-~ -1 VI' . f(x) 2 [r (~~+~-~v) r (~~+~+~v)] - - J -5 (xy)]dy g(y) (XY)~[S~, v(xy) ~, v 0 [xy)~]dX VII. g(y) f(x)\ ~ J 0 0 VII' - f(x) g(y) \ [(xy) lz]dy ~ f 0 0 with \ (z) o (For notations and definitions see the appendix of this book.) The transform VII is also known as the divisor transform.

Nikeza le ebook isilinganiso

Sitshele ukuthi ucabangani.

Ulwazi lokufunda

Amasmathifoni namathebulethi
Faka uhlelo lokusebenza lwe-Google Play Amabhuku lwe-Android ne-iPad/iPhone. Livunyelaniswa ngokuzenzakalela ne-akhawunti yakho liphinde likuvumele ukuthi ufunde uxhunywe ku-inthanethi noma ungaxhunyiwe noma ngabe ukuphi.
Amakhompyutha aphathekayo namakhompyutha
Ungalalela ama-audiobook athengwe ku-Google Play usebenzisa isiphequluli sewebhu sekhompuyutha yakho.
Ama-eReaders namanye amadivayisi
Ukuze ufunde kumadivayisi e-e-ink afana ne-Kobo eReaders, uzodinga ukudawuniloda ifayela futhi ulidlulisele kudivayisi yakho. Landela imiyalelo Yesikhungo Sosizo eningiliziwe ukuze udlulise amafayela kuma-eReader asekelwayo.