Tables of Bessel Transforms

· Springer Science & Business Media
E-bok
290
Sidor
Betyg och recensioner verifieras inte  Läs mer

Om den här e-boken

This material represents a collection of integral tra- forms involving Bessel (or related) functions as kernel. The following types of inversion formulas have been singled out. k I. g(y) = f (x) (xy) 2J (xy) dx J V 0 k I' . f (x) g (y) (xy) 2J (xy) dy J V 0 II. g(y) f(x) (XY)~K (xy)dx J v 0 c+ioo k 1 II'. f (x) = g (y) (xy) 2 [Iv (xy) + I_v(xy)]dy J 27fT c-ioo or also c+ioo k 1 II". f(x) = g (y) (xy) 2Iv (xy) dx J rri oo c-i k III. g(y) f(x) (xy) 2y (xy) dx + J v 0 k III' . f(x) g(y) (xy) "1lv (xy) dy J 0 k IV. g(y) f (x) (xy) "Kv (xy) dx J 0 k g(y) (xy) 2Y (xy)dy IV' - f(x) J v 0 V Preface V. g(y) f(X)Kix(y)dx J 0 -2 -1 sinh (7TX) V'. f(x) 27T x g(y)y Kix(y)dy J 0 21-~[r(~~+~-~v)r(~~+~+~v)]-1 VI. g(y) . J f (x) (xy) ~s (xy) dx o ~, v l-~ -1 VI' . f(x) 2 [r (~~+~-~v) r (~~+~+~v)] - - J -5 (xy)]dy g(y) (XY)~[S~, v(xy) ~, v 0 [xy)~]dX VII. g(y) f(x)\ ~ J 0 0 VII' - f(x) g(y) \ [(xy) lz]dy ~ f 0 0 with \ (z) o (For notations and definitions see the appendix of this book.) The transform VII is also known as the divisor transform.

Betygsätt e-boken

Berätta vad du tycker.

Läsinformation

Smartphones och surfplattor
Installera appen Google Play Böcker för Android och iPad/iPhone. Appen synkroniseras automatiskt med ditt konto så att du kan läsa online eller offline var du än befinner dig.
Laptops och stationära datorer
Du kan lyssna på ljudböcker som du har köpt på Google Play via webbläsaren på datorn.
Läsplattor och andra enheter
Om du vill läsa boken på enheter med e-bläck, till exempel Kobo-läsplattor, måste du ladda ned en fil och överföra den till enheten. Följ anvisningarna i hjälpcentret om du vill överföra filerna till en kompatibel läsplatta.