THE WAVELET TRANSFORM

· Atlantis Studies in Mathematics for Engineering and Science Buku 4 · Springer Science & Business Media
eBook
178
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

The wavelet transform has emerged as one of the most promising function transforms with great potential in applications during the last four decades. The present monograph is an outcome of the recent researches by the author and his co-workers, most of which are not available in a book form. Nevertheless, it also contains the results of many other celebrated workers of the ?eld. The aim of the book is to enrich the theory of the wavelet transform and to provide new directions for further research in theory and applications of the wavelet transform. The book does not contain any sophisticated Mathematics. It is intended for graduate students of Mathematics, Physics and Engineering sciences, as well as interested researchers from other ?elds. The Fourier transform has wide applications in Pure and Applied Mathematics, Physics and Engineering sciences; but sometimes one has to make compromise with the results obtainedbytheFouriertransformwiththephysicalintuitions. ThereasonisthattheFourier transform does not re?ect the evolution over time of the (physical) spectrum and thus it contains no local information. The continuous wavelet transform (W f)(b,a), involving ? wavelet ?, translation parameterb and dilation parametera, overcomes these drawbacks of the Fourier transform by representing signals (time dependent functions) in the phase space (time/frequency) plane with a local frequency resolution. The Fourier transform is p n restricted to the domain L (R ) with 1 p 2, whereas the wavelet transform can be de?ned for 1 p

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.