The symmetry of hyperoperation is expressed by hypergroup, more extensive hyperalgebraic structures than hypergroups are studied in this paper. The new concepts of neutrosophic extended triplet semihypergroup (NET- semihypergroup) and neutrosophic extended triplet hypergroup (NET-hypergroup) are firstly introduced, some basic properties are obtained, and the relationships among NET- semihypergroups, regular semihypergroups, NET-hypergroups and regular hypergroups are systematically are investigated. Moreover, pure NET-semihypergroup and pure NET-hypergroup are investigated, and a strucuture theorem of commutative pure NET-semihypergroup is established. Finally, a new notion of weak commutative NET-semihypergroup is proposed, some important examples are obtained by software MATLAB, and the following important result is proved: every pure and weak commutative NET-semihypergroup is a disjoint union of some regular hypergroups which are its
subhypergroups.
ဤ E-စာအုပ်ကို အဆင့်သတ်မှတ်ပါ
သင့်အမြင်ကို ပြောပြပါ။
သတင်းအချက်အလက် ဖတ်နေသည်
စမတ်ဖုန်းများနှင့် တက်ဘလက်များ
Android နှင့် iPad/iPhone တို့အတွက် Google Play Books အက်ပ် ကို ထည့်သွင်းပါ။ ၎င်းသည် သင့်အကောင့်နှင့် အလိုအလျောက် စင့်ခ်လုပ်ပေးပြီး နေရာမရွေး အွန်လိုင်းတွင်ဖြစ်စေ သို့မဟုတ် အော့ဖ်လိုင်းတွင်ဖြစ်စေ ဖတ်ရှုခွင့်ရရှိစေပါသည်။
လက်တော့ပ်များနှင့် ကွန်ပျူတာများ
Google Play မှတစ်ဆင့် ဝယ်ယူထားသော အော်ဒီယိုစာအုပ်များအား သင့်ကွန်ပျူတာ၏ ဝဘ်ဘရောင်ဇာကို အသုံးပြု၍ နားဆင်နိုင်ပါသည်။