Symmetries and Integrability of Difference Equations

· · ·
· London Mathematical Society Lecture Note Series Cartea 381 · Cambridge University Press
Carte electronică
361
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Difference equations are playing an increasingly important role in the natural sciences. Indeed many phenomena are inherently discrete and are naturally described by difference equations. Phenomena described by differential equations are therefore approximations of more basic discrete ones. Moreover, in their study it is very often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference equations. This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference ones. Each of the eleven chapters is a self-contained treatment of a topic, containing introductory material as well as the latest research results. The book will be welcomed by graduate students and researchers seeking an introduction to the field. As a survey of the current state of the art it will also serve as a valuable reference.

Despre autor

Decio Levi is a researcher in the Faculty of Engineering at the Università degli Studi Roma Tre.

Peter Olver is a Professor and currently Head of the School of Mathematics at the University of Minnesota.

Zora Thomova is an Associate Professor of Mathematics at the State University of New York – Institute of Technology.

Pavel Winternitz is a Professor in the Department of Mathematics and Statistics at the Université de Montréal.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.