Symmetries and Integrability of Difference Equations

· · ·
· London Mathematical Society Lecture Note Series Knjiga 381 · Cambridge University Press
E-knjiga
361
str.
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

Difference equations are playing an increasingly important role in the natural sciences. Indeed many phenomena are inherently discrete and are naturally described by difference equations. Phenomena described by differential equations are therefore approximations of more basic discrete ones. Moreover, in their study it is very often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference equations. This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference ones. Each of the eleven chapters is a self-contained treatment of a topic, containing introductory material as well as the latest research results. The book will be welcomed by graduate students and researchers seeking an introduction to the field. As a survey of the current state of the art it will also serve as a valuable reference.

O autoru

Decio Levi is a researcher in the Faculty of Engineering at the Università degli Studi Roma Tre.

Peter Olver is a Professor and currently Head of the School of Mathematics at the University of Minnesota.

Zora Thomova is an Associate Professor of Mathematics at the State University of New York – Institute of Technology.

Pavel Winternitz is a Professor in the Department of Mathematics and Statistics at the Université de Montréal.

Ocijenite ovu e-knjigu

Recite nam što mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinkronizira s vašim računom i omogućuje vam da čitate online ili offline gdje god bili.
Prijenosna i stolna računala
Audioknjige kupljene na Google Playu možete slušati pomoću web-preglednika na računalu.
Elektronički čitači i ostali uređaji
Za čitanje na uređajima s elektroničkom tintom, kao što su Kobo e-čitači, trebate preuzeti datoteku i prenijeti je na svoj uređaj. Slijedite detaljne upute u centru za pomoć za prijenos datoteka na podržane e-čitače.