Symmetries and Integrability of Difference Equations

· · ·
· London Mathematical Society Lecture Note Series Kirja 381 · Cambridge University Press
E-kirja
361
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

Difference equations are playing an increasingly important role in the natural sciences. Indeed many phenomena are inherently discrete and are naturally described by difference equations. Phenomena described by differential equations are therefore approximations of more basic discrete ones. Moreover, in their study it is very often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference equations. This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference ones. Each of the eleven chapters is a self-contained treatment of a topic, containing introductory material as well as the latest research results. The book will be welcomed by graduate students and researchers seeking an introduction to the field. As a survey of the current state of the art it will also serve as a valuable reference.

Tietoja kirjoittajasta

Decio Levi is a researcher in the Faculty of Engineering at the Università degli Studi Roma Tre.

Peter Olver is a Professor and currently Head of the School of Mathematics at the University of Minnesota.

Zora Thomova is an Associate Professor of Mathematics at the State University of New York – Institute of Technology.

Pavel Winternitz is a Professor in the Department of Mathematics and Statistics at the Université de Montréal.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.