Symmetries and Integrability of Difference Equations

· · ·
· London Mathematical Society Lecture Note Series Книга 381 · Cambridge University Press
Електронна книга
361
Страници
Оценките и отзивите не са потвърдени  Научете повече

Всичко за тази електронна книга

Difference equations are playing an increasingly important role in the natural sciences. Indeed many phenomena are inherently discrete and are naturally described by difference equations. Phenomena described by differential equations are therefore approximations of more basic discrete ones. Moreover, in their study it is very often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference equations. This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference ones. Each of the eleven chapters is a self-contained treatment of a topic, containing introductory material as well as the latest research results. The book will be welcomed by graduate students and researchers seeking an introduction to the field. As a survey of the current state of the art it will also serve as a valuable reference.

За автора

Decio Levi is a researcher in the Faculty of Engineering at the Università degli Studi Roma Tre.

Peter Olver is a Professor and currently Head of the School of Mathematics at the University of Minnesota.

Zora Thomova is an Associate Professor of Mathematics at the State University of New York – Institute of Technology.

Pavel Winternitz is a Professor in the Department of Mathematics and Statistics at the Université de Montréal.

Оценете тази електронна книга

Кажете ни какво мислите.

Информация за четенето

Смартфони и таблети
Инсталирайте приложението Google Play Книги за Android и iPad/iPhone. То автоматично се синхронизира с профила ви и ви позволява да четете онлайн или офлайн, където и да сте.
Лаптопи и компютри
Можете да слушате закупените от Google Play аудиокниги посредством уеб браузъра на компютъра си.
Електронни четци и други устройства
За да четете на устройства с електронно мастило, като например електронните четци от Kobo, трябва да изтеглите файл и да го прехвърлите на устройството си. Изпълнете подробните инструкции в Помощния център, за да прехвърлите файловете в поддържаните електронни четци.