Symmetric Inverse Semigroups

· Crm Proceedings & Lecture Notes Cartea 50 · American Mathematical Soc.
5,0
O recenzie
Carte electronică
166
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

With over 60 figures, tables, and diagrams, this text is both an intuitive introduction to and a rigorous study of finite symmetric inverse semigroups. The model, denoted $C_n$, consists of all charts (one-one partial transformations) of the set ${1,\dots,n}$ under the usual composition of mappings. It has the symmetric groups $S_n$ as a subgroup, and many classical features of $S_n$ are extended to $C_n$. It turns out that these semigroups enjoy many of the classical features of finite symmetric groups. For example, cycle notation, conjugacy, commutativity, parity of permutations, alternating subgroups, Klein 4-group, Ruffini's result on cyclic groups, Moore's presentations of the symmetric and alternating groups, and the centralizer theory of symmetric groups are extended to more general counterparts in $C_n$.Lipscomb classifies normal subsemigroups and also illustrates and applies an Eilenberg-style wreath product. The basic $C_n$ theory is further extended to partial transformation semigroups, and the Reconstruction Conjecture of graph theory is recast as a Rees' ideal-extension conjecture. This book presents much of the material on the theory of finite symmetric inverse semigroups, unifying the classical finite symmetric group theory with its semigroup analogue. A comment section at the end of each chapter provides historical perspective. New proofs, new theorems and the use of multiple figures, tables, and diagrams to present complex ideas make this book current and highly readable.

Evaluări și recenzii

5,0
O recenzie

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.