Symmetric Inverse Semigroups

· Crm Proceedings & Lecture Notes Livro 50 · American Mathematical Soc.
5,0
1 avaliação
E-book
166
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

With over 60 figures, tables, and diagrams, this text is both an intuitive introduction to and a rigorous study of finite symmetric inverse semigroups. The model, denoted $C_n$, consists of all charts (one-one partial transformations) of the set ${1,\dots,n}$ under the usual composition of mappings. It has the symmetric groups $S_n$ as a subgroup, and many classical features of $S_n$ are extended to $C_n$. It turns out that these semigroups enjoy many of the classical features of finite symmetric groups. For example, cycle notation, conjugacy, commutativity, parity of permutations, alternating subgroups, Klein 4-group, Ruffini's result on cyclic groups, Moore's presentations of the symmetric and alternating groups, and the centralizer theory of symmetric groups are extended to more general counterparts in $C_n$.Lipscomb classifies normal subsemigroups and also illustrates and applies an Eilenberg-style wreath product. The basic $C_n$ theory is further extended to partial transformation semigroups, and the Reconstruction Conjecture of graph theory is recast as a Rees' ideal-extension conjecture. This book presents much of the material on the theory of finite symmetric inverse semigroups, unifying the classical finite symmetric group theory with its semigroup analogue. A comment section at the end of each chapter provides historical perspective. New proofs, new theorems and the use of multiple figures, tables, and diagrams to present complex ideas make this book current and highly readable.

Classificações e resenhas

5,0
1 avaliação

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.