Symbolic Neutrosophic Theory

· Infinite Study
電子書
194
頁數
符合資格
評分和評論未經驗證 瞭解詳情

關於這本電子書

Symbolic (or Literal) Neutrosophic Theory is referring to the use of abstract symbols (i.e. the letters T, I, F, or their refined indexed letters Tj, Ik, Fl) in neutrosophics.

In the first chapter we extend the dialectical triad thesis-antithesis-synthesis (dynamics of <A> and <antiA>, to get a synthesis) to the neutrosophic tetrad thesis-antithesis-neutrothesis-neutrosynthesis (dynamics of <A>, <antiA>, and <neutA>, in order to get a neutrosynthesis).

In the second chapter we introduce the neutrosophic system and neutrosophic dynamic system.  A neutrosophic system is a quasi- or (t,i,f)–classical system, in the sense that the neutrosophic system deals with quasi-terms/concepts/attributes, etc. [or (t,i,f)-terms/concepts/attributes], which are approximations of the classical terms/concepts/attributes, i.e. they are partially true/membership/probable (t), partially indeterminate (i), and partially false/nonmembership/improbable (f), where t, i, f are subsets of the unitary interval [0, 1].  

In the third chapter we introduce for the first time the notions of Neutrosophic Axiom, Neutrosophic Deducibility, Neutrosophic Axiomatic System, Degree of Contradiction (Dissimilarity) of Two Neutrosophic Axioms, etc.

The fourth chapter we introduced for the first time a new type of structures, called (t, i, f)-Neutrosophic Structures, presented from a neutrosophic logic perspective, and we showed particular cases of such structures in geometry and in algebra. In any field of knowledge, each structure is composed from two parts: a space, and a set of axioms (or laws) acting (governing) on it. If the space, or at least one of its axioms (laws), has some indeterminacy of the form (t, i, f)  ≠ (1, 0, 0), that structure is a (t, i, f)-Neutrosophic Structure.

In the fifth chapter we make a short history of: the neutrosophic set, neutrosophic numerical components and neutrosophic literal components, neutrosophic numbers, etc. The aim of this chapter is to construct examples of splitting the literal indeterminacy (I) into literal sub-indeterminacies (I1,I2,…,Ir), and to define a multiplication law of these literal sub-indeterminacies in order to be able to build refined I-neutrosophic algebraic structures.

In the sixth chapter we define for the first time three neutrosophic actions and their properties. We then introduce the prevalence order on (T, I, F) with respect to a given neutrosophic operator "o", which may be subjective - as defined by the neutrosophic experts. And the refinement of neutrosophic entities <A>, <neutA>, and <antiA>. Then we extend the classical logical operators to neutrosophic literal (symbolic) logical operators and to refined literal (symbolic) logical operators, and we define the refinement neutrosophic literal (symbolic) space.

In the seventh chapter we introduce for the first time the neutrosophic quadruple numbers (of the form a+bT+cI+dF) and the refined neutrosophic quadruple numbers. Then we define an absorbance law, based on a prevalence order, both of them in order to multiply the neutrosophic components T, I, F or their sub-components T_j, I_k, F_l and thus to construct the multiplication of neutrosophic quadruple numbers.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。