Sums of Independent Random Variables

· Springer Science & Business Media
1,0
O recenzie
Carte electronică
348
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The classic "Limit Distributions for Sums of Independent Random Variables" by B.V. Gnedenko and A.N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has devel oped rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by Ibragimov y Linnik, "Independent and stationary sequences of random variables", which appeared in 1965, contains an exposition of the contem porary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distri buted random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and KolmogoTOv deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity

Evaluări și recenzii

1,0
O recenzie

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.