Submanifolds and Holonomy: Edition 2

· ·
· Chapman & Hall/CRC Monographs and Research Notes in Mathematics Llibre 21 · CRC Press
Llibre electrònic
494
Pàgines
Apte
No es verifiquen les puntuacions ni les ressenyes Més informació

Sobre aquest llibre

Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom

Sobre l'autor

Jurgen Berndt is a professor of mathematics at King's College London. He is the author of two research monographs and more than 50 research articles. His research interests encompass geometrical problems with algebraic, analytic, or topological aspects, particularly the geometry of submanifolds, curvature of Riemannian manifolds, geometry of homogeneous manifolds, and Lie group actions on manifolds. He earned a PhD from the University of Cologne.

Sergio Console (1965-2013) was a researcher in the Department of Mathematics at the University of Turin. He was the author or coauthor of more than 30 publications. His research focused on differential geometry and algebraic topology.

Carlos Enrique Olmos is a professor of mathematics at the National University of Cordoba and principal researcher at the Argentine Research Council (CONICET). He is the author of more than 35 research articles. His research interests include Riemannian geometry, geometry of submanifolds, submanifolds, and holonomy. He earned a PhD from the National University of Cordoba.

Puntua aquest llibre electrònic

Dona'ns la teva opinió.

Informació de lectura

Telèfons intel·ligents i tauletes
Instal·la l'aplicació Google Play Llibres per a Android i per a iPad i iPhone. Aquesta aplicació se sincronitza automàticament amb el compte i et permet llegir llibres en línia o sense connexió a qualsevol lloc.
Ordinadors portàtils i ordinadors de taula
Pots escoltar els audiollibres que has comprat a Google Play amb el navegador web de l'ordinador.
Lectors de llibres electrònics i altres dispositius
Per llegir en dispositius de tinta electrònica, com ara lectors de llibres electrònics Kobo, hauràs de baixar un fitxer i transferir-lo al dispositiu. Segueix les instruccions detallades del Centre d'ajuda per transferir els fitxers a lectors de llibres electrònics compatibles.