Strongly Regular Graphs

· Encyclopedia of Mathematics and its Applications Livro 182 · Cambridge University Press
E-book
482
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

Strongly regular graphs lie at the intersection of statistical design, group theory, finite geometry, information and coding theory, and extremal combinatorics. This monograph collects all the major known results together for the first time in book form, creating an invaluable text that researchers in algebraic combinatorics and related areas will refer to for years to come. The book covers the theory of strongly regular graphs, polar graphs, rank 3 graphs associated to buildings and Fischer groups, cyclotomic graphs, two-weight codes and graphs related to combinatorial configurations such as Latin squares, quasi-symmetric designs and spherical designs. It gives the complete classification of rank 3 graphs, including some new constructions. More than 100 graphs are treated individually. Some unified and streamlined proofs are featured, along with original material including a new approach to the (affine) half spin graphs of rank 5 hyperbolic polar spaces.

Sobre o autor

Andries E. Brouwer is Emeritus Professor at TU Eindhoven. He is the co-author of Distance Regular Graphs (1989), and the textbook Spectra of Graphs (2012). He received an honorary doctorate from Aalborg University, Denmark in 2004.

H. Van Maldeghem is Senior Full Professor in the Department of Mathematics at Ghent University, Belgium. He is the author of Generalized Polygons (1998), co-author of Translation Generalized Quadrangles (2007) and co-editor of the Collected Works of Jacques Tits (2014). He received the Hall Medal from the ICA (1999), was an Erskine Fellow at the University of Canterbury and a Hood fellow in Auckland. He is a member of the Royal Flemish Academy of Belgium for Science and the Arts.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.