Strongly Regular Graphs

· Encyclopedia of Mathematics and its Applications 182 巻 · Cambridge University Press
電子書籍
482
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

Strongly regular graphs lie at the intersection of statistical design, group theory, finite geometry, information and coding theory, and extremal combinatorics. This monograph collects all the major known results together for the first time in book form, creating an invaluable text that researchers in algebraic combinatorics and related areas will refer to for years to come. The book covers the theory of strongly regular graphs, polar graphs, rank 3 graphs associated to buildings and Fischer groups, cyclotomic graphs, two-weight codes and graphs related to combinatorial configurations such as Latin squares, quasi-symmetric designs and spherical designs. It gives the complete classification of rank 3 graphs, including some new constructions. More than 100 graphs are treated individually. Some unified and streamlined proofs are featured, along with original material including a new approach to the (affine) half spin graphs of rank 5 hyperbolic polar spaces.

著者について

Andries E. Brouwer is Emeritus Professor at TU Eindhoven. He is the co-author of Distance Regular Graphs (1989), and the textbook Spectra of Graphs (2012). He received an honorary doctorate from Aalborg University, Denmark in 2004.

H. Van Maldeghem is Senior Full Professor in the Department of Mathematics at Ghent University, Belgium. He is the author of Generalized Polygons (1998), co-author of Translation Generalized Quadrangles (2007) and co-editor of the Collected Works of Jacques Tits (2014). He received the Hall Medal from the ICA (1999), was an Erskine Fellow at the University of Canterbury and a Hood fellow in Auckland. He is a member of the Royal Flemish Academy of Belgium for Science and the Arts.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。