Strongly Regular Graphs

· Encyclopedia of Mathematics and its Applications Knjiga 182 · Cambridge University Press
E-knjiga
482
str.
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

Strongly regular graphs lie at the intersection of statistical design, group theory, finite geometry, information and coding theory, and extremal combinatorics. This monograph collects all the major known results together for the first time in book form, creating an invaluable text that researchers in algebraic combinatorics and related areas will refer to for years to come. The book covers the theory of strongly regular graphs, polar graphs, rank 3 graphs associated to buildings and Fischer groups, cyclotomic graphs, two-weight codes and graphs related to combinatorial configurations such as Latin squares, quasi-symmetric designs and spherical designs. It gives the complete classification of rank 3 graphs, including some new constructions. More than 100 graphs are treated individually. Some unified and streamlined proofs are featured, along with original material including a new approach to the (affine) half spin graphs of rank 5 hyperbolic polar spaces.

O autoru

Andries E. Brouwer is Emeritus Professor at TU Eindhoven. He is the co-author of Distance Regular Graphs (1989), and the textbook Spectra of Graphs (2012). He received an honorary doctorate from Aalborg University, Denmark in 2004.

H. Van Maldeghem is Senior Full Professor in the Department of Mathematics at Ghent University, Belgium. He is the author of Generalized Polygons (1998), co-author of Translation Generalized Quadrangles (2007) and co-editor of the Collected Works of Jacques Tits (2014). He received the Hall Medal from the ICA (1999), was an Erskine Fellow at the University of Canterbury and a Hood fellow in Auckland. He is a member of the Royal Flemish Academy of Belgium for Science and the Arts.

Ocijenite ovu e-knjigu

Recite nam što mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinkronizira s vašim računom i omogućuje vam da čitate online ili offline gdje god bili.
Prijenosna i stolna računala
Audioknjige kupljene na Google Playu možete slušati pomoću web-preglednika na računalu.
Elektronički čitači i ostali uređaji
Za čitanje na uređajima s elektroničkom tintom, kao što su Kobo e-čitači, trebate preuzeti datoteku i prenijeti je na svoj uređaj. Slijedite detaljne upute u centru za pomoć za prijenos datoteka na podržane e-čitače.