String-Math 2014

· · ·
· Proceedings of Symposia in Pure Mathematics Cartea 93 · American Mathematical Soc.
Carte electronică
396
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The conference String-Math 2014 was held from June 9–13, 2014, at the University of Alberta. This edition of String-Math is the first to include satellite workshops: “String-Math Summer School” (held from June 2–6, 2014, at the University of British Columbia), “Calabi-Yau Manifolds and their Moduli” (held from June 14–18, 2014, at the University of Alberta), and “Quantum Curves and Quantum Knot Invariants” (held from June 16–20, 2014, at the Banff International Research Station). This volume presents the proceedings of the conference and satellite workshops.

For mathematics, string theory has been a source of many significant inspirations, ranging from Seiberg-Witten theory in four-manifolds, to enumerative geometry and Gromov-Witten theory in algebraic geometry, to work on the Jones polynomial in knot theory, to recent progress in the geometric Langlands program and the development of derived algebraic geometry and n-category theory. In the other direction, mathematics has provided physicists with powerful tools, ranging from powerful differential geometric techniques for solving or analyzing key partial differential equations, to toric geometry, to K-theory and derived categories in D-branes, to the analysis of Calabi-Yau manifolds and string compactifications, to modular forms and other arithmetic techniques. Articles in this book address many of these topics.

Despre autor

 Edited by Vincent Bouchard: University of Alberta, Edmonton, Alberta, Canada,
Charles Doran: University of Alberta, Edmonton, Alberta, Canada,
Stefan Méndez-Diez: Utah State University, Logan, UT,
Callum Quigley: University of Toronto, Toronto, Ontario, Canada

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.