Stratifying Endomorphism Algebras

· ·
· American Mathematical Society: Memoirs of the American Mathematical Society Kirja 591 · American Mathematical Soc.
E-kirja
119
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

Suppose that $R$ is a finite dimensional algebra and $T$ is a right $R$-module. Let $A = \textnormal{End}_R(T)$ be the endomorphism algebra of $T$. This memoir presents a systematic study of the relationships between the representation theories of $R$ and $A$, especially those involving actual or potential structures on $A$ which 'stratify' its homological algebra. The original motivation comes from the theory of Schur algebras and the symmetric group, Lie theory, and the representation theory of finite dimensional algebras and finite groups.The book synthesizes common features of many of the above areas, and presents a number of new directions. Included are an abstract 'Specht/Weyl module' correspondence, a new theory of stratified algebras, and a deformation theory for them. The approach reconceptualizes most of the modular representation theory of symmetric groups involving Specht modules and places that theory in a broader context. Finally, the authors formulate some conjectures involving the theory of stratified algebras and finite Coexeter groups, aiming toward understanding the modular representation theory of finite groups of Lie type in all characteristics.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.